"SYNTHETIC STUDIES ON LYCORICIDINE. II. **AN EFFICIENT ROUTE TO CIS DIHYDROLYCORICIDINE."**

Rat-y E. Keck,* Euqene Boden and Ursula Sonnewald University of Utah, Salt Lake City, Utah 84112

Summary: The tricyclic skeleton of lycoricidine has been prepared by a route involvinq an intramolecular [4 + 21 cycloaddition of a trimethylsilyloxydienamide.

The substances lycoricidine (la) and narciclasine (lb) have attracted considerable **interest due to their ranqe and potency of hioloqical effects, includinq inhibition of protein** synthesis and potent in vitro antitumor activity.¹ Moreover, the cis and trans dihydro **narciclasines also exhibit antitumor activity. In view of the relative scarcity of lvcoricidine and the absence of bioloqical assay of its dihydro derivatives, we have been**

engaqed for some time2 in studyinq svnthetic approaches to these materials. Presently, we report an especially direct method for stereocontrolled construction of the tricyclic nucleus of &, which makes the cis dihvdro derivative of lycoricidine available in multiqram quantities. The approach (as detailed below) involves, as its key feature, the first example of Diels-Alder reaction utilizinq a trimethylsilyloxydienamide. The efficacy of this process suqqests that such moieties may find further use as Oiels-Alder diene components.

Our analysis of the structural problem posed by lycoricidine suqqasted that an especially direct approach could proceed via the stratcqv outlined in Scheme 1.

Thus, our earlier studies7 and literature precedent3 suqqested that vicinal hydroxylation of 2 could be expected to oroduce cis-dihvdrolycoricidine stereospecificallv. Amonqst possible approaches to 2, the intramolecular cyclnadditinn of 3 was **particularly attractive,** particularly since qeneration of the E, E diene system of 3 could be expected from exposure of aldehyde 4 (or, in fact, any isomer of 4) to the now classic House conditions for conversion of carbonyl compounds to trimethylsilylenol ethers.⁴ The possibility that 3 could cyclize **under the conditions of its formation, thus obviatinq the need for manipulation of such a** labile intermediate, provided further impetus for subiecting such a route to experimental scrutiny.

Wittig methenylation of 5-bromopiperonal⁵ (THF, 0°) afforded bromostyrene 5, which was converted to the known⁶ acid 6 (mp 163-164°, 60% overall) by metal-halogen exchange (n^{RuLi in} ether, -65°) followed by introduction of gaseous CO_2 (-40°). Conversion to amide $\frac{7}{2}$ (mp 129-130°, from methanol) was cleanly effected by exposure of 6 to excess (3 eq.) triethylamine and methanesulfonylchloride (1.5 eq.) in dry methylene chloride (-20°, 40 min.) followed by **addition of excess (5 eq.) of henzvlamine, warminq to 73", and further reaction (73") for** 17 **h. Alkylation of the sodium salt of 7 (NaH, nMF) with cis-I-chloro-2-hutene-4** tetrahydropyranyl ether⁷ (23°, 18h.) gave 8 in essentially quantitative vield. Removal of the tetrahydropyranyl ether (PPTS⁸, methanol, reflux) and Corey-Suggs oxidation⁹ then furnished the key aldehyde 4 . Exposure of 4 to excess (6 eq.) of triethylamine and 3 eq. of **trimethvlchlorosilane in dry dimethvlformamide (nMF,** ⁷⁵¹¹**per q of 4) at reflttx (160" nil** bath) for 12 h. gave, after normal extractive workup and exposure of the organic (ethyl

acetate) extract to 2% aqueous hydrochloric acid, alcohol _9_in 60-653 yield after purification by column chromatoqraphy. This simple in situ process for qeneration of the requisite dienamide (3) with concomitant [4 t '23 cycloaddition proved superior to alternative procedures involving low temperature qeneration of 3, isolation, and thermolysis to effect cyclization. Alcohol 9 was obtained as an inseparable mixture of two isomers, both separation and **determination of isomer ratio (and structures) were conveniently effected at a later staqe.**

Acetylation of 2 (excess acetic anhydride in pyridine) and catalytic osmium tetroxide oxidation¹⁰ gave a diol which was again exposed to excess acetic anhydride in pyridine to Removal of the N-benzyl group proved extremely qive triacetate 10 in 76% yield from 9. **difficult, but was eventually accomplished in 959: yield by hydroqenolysis over palladium chloride in 4:l ethyl acetate - acetic acid at 23". The resultinq isomeric triacetates (Rf n.51 and 0.41, respectively, with chloroform-methanol, q2:8) were easily separated by column** chromatography to provide cis dihydrolycoricidine triacetate (11, mp. 268-271°) and its C₂

epimer (12, mp. 224-225°) in a ratio of ca. 3:1. The assignments of structure to the purified **triacetates were made by comparison of their richly detailed 300 MHz NMR spectra to those of** the known <u>cis</u> and <u>trans</u> dihydronarciclasine tetraacetates,' which clearly revealed, quite **unexpectedly, that both products isolated oossessed a cis rinq fusion. The assiqnment was corroborated by subjectinq the mixture of isomers obtained from the intramolecular** cycloaddition to MnO₂ oxidation, which verv smoothly (23°, 3 h) yielded a single enone 13. Although the origin of 12 is not known with certainty, it most probably results from acid (triethylamine hydrochloride) catalyzed isomerization of the trimethylsilyl ether of <u>12</u> under **the conditions utilized for intramolecular Diels-Alder reaction.ll**

The approach outlined above clearly demonstrates the utility of 4-trimethylsiloxydienamides as diene components for Diels-Alder cycloaddition. Moreover, modifications **of the above route to permit a facile introduction of the unsaturation present in la may allow a very direct synthesis of the natural material itself. Further studies are in proqress.T2**

REFERENCES AND NOTES:

- 1) **A. Mondon and K. Krohn, Chem. Ber. 108 445 (1975).**
- 2) **For a previous approach to the heteroatom array of lycoricidine, note G.E. Keck and S.A. Fleminq, Tetrahedron Lett. 4763 (1978).**
- **3) a) R. McCrindle, K.H. Dverton, and R.A. Raphael,** J. Am. **Chem. Sot., 72 1560 (1960). b)** G. Kresze and G. Schulz, Chem. Ber., 96, 2165 (1963).
- **4) H.D. House, L.J. Czuba, M. Gall, and H.M. Dlmstead, J. Drq. Chem.,z, 2374 (1969).**
- **5) F. Dallacker, Ann ., 633, 14 (1960).**
- **6) G. Stork and D.J. Morqans, Jr.,** J. Am. **Chem. SOC.,~, 7110 (1979).**
- **7)** This material was very conveniently prepared from the mono-THP of cis-2-butene-1,4-diol **via the procedure of Meyers: E.W. Collinqton and A.I.** Meyers, J. Orq. **Chem.,fi, 3044** (1971) .
- **8) N. Mivashita, A. Yoshikoshi, and P.A. Grieco, J. Drq. Chem.,E, 3772 (1977).**
- **9) E.J. Corey and J.W. Suqqs, Tetrahedron Lett., 2647 (1975).**
- **10) V. Van Rheenen, R.C. Kelly and 0. Y. Cha, Tetrahedron Lett., 1973 (1976).**
- **11) We are at present unable to exclude the formation of a Z,E isomer of 3 as the precursor of isomer 12. -**
- **12) This research was supported financially by Grant Number CA 24166, awarded by the National Cancer Institute, DHEW.**

(Received in USA 13 April 1981)